Multi-Objective Optimization of MEMS-based Box Pattern Microheaters Using Response Surface Method

Onny Setyawati, Universitas Brawijaya, Indonesia
Moch. Agus Choiron, Universitas Brawijaya, Indonesia
Axel Bangert, University of Kassel, Germany
Carl Sandhagen, University of Kassel, Germany

Abstract


We present a response surface method to evaluate multi-objective optimization for MEMS-based microheater design. Box pattern, the standard microheater shape, was selected in this study since it has a uniform temperature distribution compared to other patterns. The optimum parameters are used to obtain the maximum total current density and Joule heat.  Based on a hybrid of the Response Surface Method and Central Composited Design, the model simulation emerged with 25 sets of Design Experiments.  As expected, the voltage is proportional to the increased output temperature and Joule heat of the microheater. Material thermal conductivity, anchor length and thickness of the heating element are included as design variables for the optimization. The microheater thicknesses of 4.23 - 4.55 µm, length of 40 µm and thermal conductivity of materials of approximately between 52 to 66 Wm-1K-1 became the optimized results at 1 V input voltage to obtain a maximum Joule heat of 4.9x105 W/mm3 and total current density of 5.6x107 mA/mm2.


Keywords


Multi-objective; central composite design; box pattern microheater; response surface method

Full Text:

PDF

References


H. Nazemi, A. Joseph, J. Park, and A. Emadi, “Advanced Micro- and Nano-Gas Sensor Technology: A Review,” Sensors, vol. 19, no. 6, p. 1285, Mar. 2019, doi: 10.3390/s19061285.

J. Cho and G. Shin, “Fabrication of a Flexible, Wireless Micro-Heater on Elastomer for Wearable Gas Sensor Applications,” Polymers (Basel), vol. 14, no. 8, p. 1557, Apr. 2022, doi: 10.3390/polym14081557.

Z. Yuan, F. Yang, and F. Meng, “Research Progress on Coating of Sensitive Materials for Micro-Hotplate Gas Sensor,” Micromachines (Basel), vol. 13, no. 3, p. 491, Mar. 2022, doi: 10.3390/mi13030491.

N. Holt, L. G. Marques, A. Van Horn, M. Montazeri, and W. Zhou, “Fabrication and control of a microheater array for Microheater Array Powder Sintering,” The International Journal of Advanced Manufacturing Technology, vol. 95, no. 1–4, pp. 1369–1376, Mar. 2018, doi: 10.1007/s00170-017-1316-8.

N. Holt, A. Van Horn, M. Montazeri, and W. Zhou, “Microheater array powder sintering: A novel additive manufacturing process,” J Manuf Process, vol. 31, pp. 536–551, Jan. 2018, doi: 10.1016/j.jmapro.2017.12.009.

G. Jung et al., “A low-power embedded poly-Si micro-heater for gas sensor platform based on a FET transducer and its application for NO2 sensing,” Sens Actuators B Chem, vol. 334, p. 129642, May 2021, doi: 10.1016/j.snb.2021.129642.

S. Sohrabi, L. Hajshahvaladi, M. K. Moraveji, E. Sohrabi, and F. Heidarpoor, “Patterned synthesis of nanowires in microheaters: design and operational aspects,” Microfluid Nanofluidics, vol. 26, no. 1, p. 3, Jan. 2022, doi: 10.1007/s10404-021-02506-y.

J.-H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, “Low-Voltage-Driven Sensors Based on ZnO Nanowires for Room-Temperature Detection of NO 2 and CO Gases,” ACS Appl Mater Interfaces, vol. 11, no. 27, pp. 24172–24183, Jul. 2019, doi: 10.1021/acsami.9b07208.

R. M. Krishna et al., “Polysilicon micro-heaters for resonance tuning in CMOS photonics,” Opt Lett, vol. 47, no. 5, p. 1097, Mar. 2022, doi: 10.1364/OL.441510.

T. Hyodo, K. Nagae, T. Ueda, T. Sasahara, and Yasuhiro Shimizu, “Sensing Behavior of Adsorption/Combustion-type Gas Microsensors to Various Alcoholic Vapors,” Sensors and Materials, vol. 35, no. 11, p. 3851, Nov. 2023, doi: 10.18494/SAM4403.

D. G. Jung, J. Lee, J. B. Kwon, B. Maeng, H. K. An, and D. Jung, “Low-Voltage-Driven SnO2-Based H2S Microsensor with Optimized Micro-Heater for Portable Gas Sensor Applications,” Micromachines (Basel), vol. 13, no. 10, 2022, doi: 10.3390/mi13101609.

M. Prasad and P. S. Dutta, “Development of micro-hotplate and its reliability for gas sensing applications,” Applied Physics A, vol. 124, no. 11, p. 788, Nov. 2018, doi: 10.1007/s00339-018-2210-4.

A. Lahlalia, O. Le Neel, R. Shankar, S. Y. Kam, and L. Filipovic, “Electro-Thermal Simulation & Characterization of a Microheater for SMO Gas Sensors,” Journal of Microelectromechanical Systems, vol. 27, no. 3, pp. 529–537, Jun. 2018, doi: 10.1109/JMEMS.2018.2822942.

B. Tang, Y. Shi, J. Li, J. Tang, and Q. Feng, “Design, Simulation, and Fabrication of Multilayer Al2O3 Ceramic Micro-Hotplates for High Temperature Gas Sensors,” Sensors, vol. 22, no. 18, p. 6778, Sep. 2022, doi: 10.3390/s22186778.

D. Li, Y. Ruan, C. Chen, W. He, C. Chi, and Q. Lin, “Design and Thermal Analysis of Flexible Microheaters,” Micromachines (Basel), vol. 13, no. 7, p. 1037, Jun. 2022, doi: 10.3390/mi13071037.

S. Waghmare, M. A. Hasan, S. Manikandan, and S. Datta, “Computational design and analysis of patterned micro-heaters with various thickness and trace width,” J Phys Conf Ser, vol. 2054, no. 1, p. 012083, Oct. 2021, doi: 10.1088/1742-6596/2054/1/012083.

Z. E. Jeroish, K. S. Bhuvaneshwari, F. Samsuri, and V. Narayanamurthy, “Microheater: material, design, fabrication, temperature control, and applications—a role in COVID-19,” Biomed Microdevices, vol. 24, no. 1, p. 3, Mar. 2022, doi: 10.1007/s10544-021-00595-8.

S. K. Tiwari, S. Bhat, K. K. Mahato, and B. B. Manjunath, “Design and Simulation of Parallel Microheater,” Frontiers in Heat and Mass Transfer, vol. 10, Feb. 2018, doi: 10.5098/hmt.10.9.

L. F. Setiawan, G. Witjaksono, and A. Y. Ahmed, “Modeling and Simulation of Thermally Actuated MEMS Resonators for Gas Sensing Applications,” in 2018 IEEE Student Conference on Research and Development (SCOReD), IEEE, Nov. 2018, pp. 1–5. doi: 10.1109/SCORED.2018.8710897.

C. Paun, R. Tomescu, D. Cristea, O. Ionescu, and C. Parvulescu, “Design, fabrication and caracterization of a micro-heater for metasurface-based gas sensors,” in 2020 International Semiconductor Conference (CAS), IEEE, Oct. 2020, pp. 31–34. doi: 10.1109/CAS50358.2020.9267975.

R. Tariq, F. Maqbool, and S. Z. Abbas, “Small-scale production of hydrogen via auto-thermal reforming in an adiabatic packed bed reactor: Parametric study and reactor’s optimization through response surface methodology,” Comput Chem Eng, vol. 145, p. 107192, Feb. 2021, doi: 10.1016/j.compchemeng.2020.107192.

T. Suwanda, R. Soenoko, Y. S. Irawan, and Moch. A. Choiron, “The Optimum Process Parameter of Dissimilar Metal AA6061 – AISI304 Continuous Drive Friction Welding,” Journal of Southwest Jiaotong University, vol. 55, no. 2, 2020, doi: 10.35741/issn.0258-2724.55.2.52.

J. Bayuo, M. A. Abukari, and K. B. Pelig-Ba, “Optimization using central composite design (CCD) of response surface methodology (RSM) for biosorption of hexavalent chromium from aqueous media,” Appl Water Sci, vol. 10, no. 6, p. 135, Jun. 2020, doi: 10.1007/s13201-020-01213-3.

Z. Liu et al., “Multi-objective optimization of the performance and emission characteristics for a dual-fuel engine with hydrogen addition,” Fuel, vol. 332, p. 126231, Jan. 2023, doi: 10.1016/j.fuel.2022.126231.

M. Shanmugam and L. Sirisha Maganti, “Multi-objective optimization of parallel microchannel heat sink with inlet/outlet U, I, Z type manifold configuration by RSM and NSGA-II,” Int J Heat Mass Transf, vol. 201, p. 123641, Feb. 2023, doi: 10.1016/j.ijheatmasstransfer.2022.123641.




DOI: https://doi.org/10.21831/elinvo.v9i2.77133

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Elinvo (Electronics, Informatics, and Vocational Education)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Our Journal indexed by:

ISSN 2477-2399 (online) || ISSN 2580-6424 (print)

View My Stats

Flag Counter