Machine Learning System Implementation of Education Podcast Recommendations on Spotify Applications Using Content-Based Filtering and TF-IDF
Fatchul Arifin, Universitas Negeri Yogyakarta, Indonesia
Abstract
Spotify, this popular music and podcast streaming service, has a fundamental problem in assisting clients in finding podcasts that fit their interests. Thus, the goal of this project is to develop a podcast recommendation system that would enhance users' capacity to identify pertinent content, particularly in the educational genre. By using content-based filtration techniques, this system analyzes the user's listening preferences and interests before recommending educational podcasts. The podcast data source is Spotify, and the suggestions are produced using the TF-IDF and Cosine Similarity techniques. The recommendations provide a list of educational podcasts catered to the user's specific interests. The Confusion Matrix Classification Report was tested to assess system performance during the review phase. Precision values show how accurate the system was at recommending educational podcasts; on average, they range from 0.52 to 0.74. Additionally, the recall value showed a mean of 0.51 and a mean of 0.79, indicating that the algorithm successfully located the relevant content. To put it briefly, this custom recommendation engine enhances the listening experience for Spotify customers by suggesting educational podcasts based on their preferences. The system's ability to match users with material that aligns with their interests was demonstrated by the metrics used to assess its performance. With more user interactions with the system, it was anticipated by Cosine Similarity, a statistic used to determine the quality of recommendations, will continue to improve. To improve user experience and personalize the podcast listening experience on Spotify, this research addresses the challenge of locating suitable podcasts.
Keywords
Full Text:
PDFReferences
M. M. Fahmy, "Confusion Matrix in Binary Classification Problems: A Step-by-Step Tutorial," J. Eng. Res., vol. 6, no. 5, 2022.
R. Pahlevi, “Persentase Pendengar Podcast terhadap Total Pengguna Internet Berdasarkan Negara, Kuartal III 2021,” databoks, 2022. https://databoks.katadata.co.id/datapublish/2022/02/08/pendengar-podcast-indonesia-terbesar-ke-2-di-dunia.
C. Osazuwa, “Spotify And Streaming Music Analysis,” christineosazuwa.com, 2017. http://christineosazuwa.com/portfolio/spotify-and-streaming-musicindustry-analysis/.
R. Triwijanarko, “Tak Mau Disalip Kompetitor, Spotify Kembangkan Teknologi AI,” Marketeers, 2017. https://www.marketeers.com/spotify-kembangkan-teknologi-ai/.
B. Phillips, "Student-Produced Podcasts in Language Learning – Exploring Student Perceptions of Podcast Activities," IAFOR J. Educ., vol. 5, no. 3, pp. 157–171, 2017, doi: 10.22492/ije.5.3.08.
A. L. Fatroh, “EFEKTIVITAS PENGGUNAAN MEDIA PODCAST DALAM APLIKASI SPOTIFY UNTUK MENINGKATKAN PEMAHAMAN PESERTA DIDIK PADA PEMBELAJARAN SEJARAH KEBUDAYAAN ISLAM DI KELAS VIII SMPM 15 BRONDONG LAMONGAN,” UNIVERSITAS ISLAM NEGERI SUNAN AMPEL SURABAYA, 2023.
Y. Setiawan, A. Nurwanto, and A. Erlansari, “Implementasi Item Based Collaborative Filtering Dalam Pemberian Rekomendasi Agenda Wisata Berbasis Android,” Pseudocode, vol. 6, no. 1 SE-Articles, pp. 13–20, Apr. 2019, doi: 10.33369/pseudocode.6.1.13-20.
A. I. Putra and R. R. Santika, “Implementasi Machine Learning dalam Penentuan Rekomendasi Musik dengan Metode Content-Based Filtering,” Edumatic J. Pendidik. Inform., vol. 4, no. 1, pp. 121–130, 2020, doi: 10.29408/edumatic.v4i1.2162.
R. T. Wahyuni, D. Prastiyanto, and E. Supraptono, “Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF pada Sistem Klasifikasi Dokumen Skripsi,” J. Tek. Elektro Univ. Negeri Semarang, vol. 9, no. 1, pp. 18–23, 2017, [Online]. Available: https://journal.unnes.ac.id/nju/index.php/jte/article/download/10955/6659.
M. Yusuf and A. Cherid, “Implementasi Algoritma Cosine Similarity Dan Metode TF-IDF Berbasis PHP Untuk Menghasilkan Rekomendasi Seminar,” J. Ilm. Fak. Ilmu Komput., vol. 9, no. 1, pp. 8–16, 2020, [Online]. Available: https://publikasi.mercubuana.ac.id/index.php/fasilkom/article/view/8830.
T. Zhang and S. S. Ge, "An Improved TF-IDF Algorithm Based on Class Discriminative Strength for Text Categorization on Desensitized Data," in Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence, 2019, pp. 39–44, doi: 10.1145/3319921.3319924.
S. Ghosh and M. S. Desarkar, "Class Specific TF-IDF Boosting for Short-Text Classification: Application to Short-Texts Generated During Disasters," in Companion Proceedings of The Web Conference 2018, 2018, pp. 1629–1637, doi: 10.1145/3184558.3191621.
J. Chamorro-Padial, F.-J. Rodrigo-Ginés, and R. Rodríguez-Sánchez, "Finding answers to COVID-19-specific questions: An information retrieval system based on latent keywords and adapted TF-IDF," J. Inf. Sci., vol. 0, no. 0, p. 01655515221110995, doi: 10.1177/01655515221110995.
S. Lubis, “Implementasi Application Programming Interface (API) Dalam Upaya Peningkatan Pengelolaan dan Pelayanan Informasi Publik Pada Kantor KPU Kabupaten Tapanuli Selatan,” MAGISTER ADMINISTRASI PUBLIK, 2017.
W. Budiharto, Machine learning dan Computational Intelligence, 1st ed. Andi Offset, 2016.
W. Jepriana and S. Hanief, “ANALISIS DAN IMPLEMENTASI METODE ITEM-BASED COLLABORATIVE FILTERING UNTUK SISTEM REKOMENDASI KONSENTRASI DI STMIK STIKOM BALI,” JANAPATI, vol. 9, no. 2, pp. 171–180, 2020.
J. Pérez-Marcos, L. M. Gómez, D. M. Jiménez-Bravo, V. F. L. Batista, and M. N. M. García, "Hybrid system for video game recommendation based on implicit ratings and social networks," J. Ambient Intell. Humans. Comput., pp. 1–11, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:213898591.
R. V. Imbar, M. Ayub, and A. Rehatta, “Implementasi Cosine Similarity dan Algoritma Smith-Waterman untuk Mendeteksi Kemiripan Teks,” J. Inform., vol. 10, no. 1, pp. 31–42, 2014.
D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender Systems: An Introduction, 1st ed., vol. 40. Cambridge University Press, 2011.
E. Prasetyo, “Data mining konsep dan aplikasi menggunakan matlab,” Yogyakarta Andi, vol. 1, 2012.
R. H. Mondi and A. Wijayanto, "RECOMMENDATION SYSTEM WITH CONTENT-BASED FILTERING METHOD FOR CULINARY TOURISM IN MANGAN APPLICATION," ITSMART J. Ilm. Teknol. Dan Inf., vol. 8, 2019.
R. A. Wiryawan and N. R. Rosyid, “Pengembangan Aplikasi Otomatisasi Administrasi Jaringan Berbasis Website Menggunakan Bahasa Pemrograman Python,” SIMETRIS, vol. 10, no. 2, pp. 1–12, 2019.
M. Yusuf and A. Cherid, “Implementasi Algoritma Cosine Similarity Dan Metode TF-IDF Berbasis PHP Untuk Menghasilkan Rekomendasi Seminar,” J. Ilm. Fak. Ilmu Komput., vol. 9, no. 1, pp. 8–16, 2020.
M. Nurjannah, Hamdani, and I. F. Astuti, "PENERAPAN ALGORITMA TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) UNTUK TEXT MINING," J. Inform. Mulawarman, vol. 8, no. 3, p. 110, 2013.
Z. Karimi, “Confusion Matrix.” 2021.
DOI: https://doi.org/10.21831/elinvo.v8i2.58014
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Elinvo (Electronics, Informatics, and Vocational Education)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Our Journal indexed by:
ISSN 2477-2399 (online) || ISSN 2580-6424 (print)