Mix Design of Geopolymer No-fines Concrete with Fly Ash and Ground Granulated Blast Furnace Slag
Suprapto Siswosukarto, Department of Civil and Environmental Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
Iman Satyarno, Department of Civil and Environmental Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
Abstract
The use of geopolymers as a cement replacement in no-fines concrete can be a solution to address the impact of cement production on global warming. The absence of standardized mix designs for geopolymer paste poses a challenge, particularly concerning workability in no-fines geopolymer concrete mixes, where insufficient workability can hinder compacting, while excessive workability may cause segregation. Additionally, geopolymer often exhibits a quick hardening time, necessitating the use of retarders such as borax. This study aims to evaluate the impact of varying the ratio of alkali activator to cementitious material (A) at 0.25, 0.30, and 0.35, with the addition of borax (C) at 3% and 5%, on the flow and hardening time of geopolymer paste. Additionally, the study aims to investigate the effect of the cement-to-aggregate volume ratio (P) on geopolymer no-fines concrete properties, particularly compressive strength and unit weight. In no-fines geopolymer concrete formulation, the absolute volume of geopolymer paste is equivalent to the volume of cement paste with a 0.4 water-to-cement (w/c) ratio, with a cement-to-aggregate volume ratio of 1:4 and 1:6. The geopolymer mixture consists of fly ash and GGBFS in a 50:50 ratio. The geopolymer activator consist of NaOH (10 M) and Na2SiO3 in a SS/SH (R) ratio of 2. The research results indicate that reducing the A ratio from 0.35 to 0.25 decreases flow and accelerates the hardening time of the geopolymer paste. Increasing the borax (C) content from 3% to 5% can prolong the hardening time and reduce flow (from 20.25 to 19.25 cm at an A ratio of 0.30). The test results of geopolymer no-fines concrete properties that increasing the volume ratio (P) from 1:4 to 1:6 can reduce the compressive strength from 30.95 to 13.27 MPa and the unit weight from 2158.83 to 1843.38 kg/m³ at (A) 0.35. However, in the concrete samples at this ratio, some voids were covered by paste. Therefore, it is recommended to use ratio (A) 0.30.
Keywords
References
L. Jiahao, F. Chin Lian, F. Hejazi, and N. Azline, “Study of properties and strength of no-fines concrete,” IOP Conf Ser Earth Environ Sci, vol. 357, no. 1, 2019, doi: 10.1088/1755-1315/357/1/012009.
T. Chockalingam, C. Vijayaprabha, and J. Leon Raj, “Experimental study on size of aggregates, size and shape of specimens on strength characteristics of pervious concrete,” Constr Build Mater, vol. 385, no. January, 2023, doi: 10.1016/j.conbuildmat.2023.131320.
T. Phoo-ngernkham, P. Chindaprasirt, V. Sata, S. Hanjitsuwan, and S. Hatanaka, “The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature,” Mater Des, vol. 55, pp. 58–65, 2014, doi: 10.1016/j.matdes.2013.09.049.
Kardiyono Tjokrodimuljo, Teknologi Beton. Biro Penerbit KMTS FT UGM, 2007.
R. S. Ravindrarajah and R. J. Kassis, “Effect of Supplementary Cementitious Materials on Properties of pervious Concrete with fixed porosity,” The Mechanics of Structures and Materials (ACMSM23), vol. 109, no. 1, pp. 53–58, 2014.
N. A. S. Purwono, Reni Sulistyawati A.M, Andika Cahyo Wicaksono3, and Windi Wahyu Utomo, “Pengaruh Fly Ash Terhadap Kuat Tekan Beton Non-Pasir,” Jurnal Rekayasa, vol. 10, no. 1, pp. 56–71, 2020, doi: 10.37037/jrftsp.v10i1.46.
M. Olivia, L. Mona Tambunan, and E. Saputra, “Properties of Palm Oil Fuel Ash (POFA) Geopolymer Mortar Cured at Ambient Temperature,” MATEC Web of Conferences, vol. 97, no. January, 2017, doi: 10.1051/matecconf/20179701006.
W. Teo, K. Shirai, J. H. Lim, and L. B. Jack, “Experimental Investigation on Ambient-Cured One-Part Alkali-Activated Binders Using Combined High-Calcium Fly Ash (HCFA) and Ground Granulated Blast Furnace Slag (GGBS),” 2022.
M. Amin and S. Nasier, “Experimental Evaluation of Eco-Friendly No-Fines Geopolymer Concrete for Sustainable Pavement Applications,” Indian J Sci Technol, vol. 11, no. 26, pp. 1–10, 2018, doi: 10.17485/ijst/2018/v11i26/130573.
S. Sasui, G. Kim, J. Nam, and T. Koyama, “Strength and Microstructure of Class-C Fly Ash and GGBS Blend Geopolymer Activated in NaOH & NaOH + Na 2 SiO 3,” 2019.
M. Putri, I. Satyarno, and D. Sulistyo, “Pengaruh Penambahan Borax terhadap Setting Time Pasta Geopolymer Berbahan Dasar Fly Ash dan Ground Granulated Blast Furnace Slag,” no. 2022, pp. 1–7, 2024.
ASTM-C618-22, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use,” Annual Book of ASTM Standards, no. C, pp. 3–6, 2010, doi: 10.1520/C0618-22.2.
ASTM C618-12a, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2012, www.astm.org,” Annual Book of ASTM Standards, pp. 1–5, 2012, doi: 10.1520/C0618.
R. Cornelis, H. Priyosulistyo, I. Satyarno, and Rochmadi, “The Investigation on Setting Time and Strength of High Calcium Fly Ash Based Geopolymer,” Applied Mechanics and Materials, vol. 881, no. May, pp. 158–164, 2018, doi: 10.4028/www.scientific.net/amm.881.158.
I. Satyarnoa, A. P. Solehudina, C. Meyartoa, D. Hadiyatmokoa, P. Muhammada, and R. Afnana, “Practical method for mix design of cement-based grout,” Procedia Eng, vol. 95, no. Scescm, pp. 356–365, 2014, doi: 10.1016/j.proeng.2014.12.194.
K. Tjokrodimuljo, Teknologi Beton. Yogyakarta: Jurusan Teknik Sipil, Fakultas Teknik Universitas Gadjah Mada, 1996.
Akhmad Subkhannur, “Penggunaan Kerikil Asal Gunung Merapi sebagai agregat dalam pmbuatan beton-non-pasir,” Universitas Gadjah Mada, 2003.
ASTM C230, “Standard Specification for Flow Table for Use in Tests of Hydraulic Cement 1,” Annual Book of ASTM Standards, pp. 4–9, 2010.
ASTMC191-08, “Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle,” ASTM International, vol. 04, no. C, pp. 1–8, 2009, [Online]. Available: www.astm.org,
Badan Standardisasi Nasional, “Cara Uji Kuat Tekan Beton dengan Benda Uji Silinder,SNI 1974-2011,” Badan Standardisasi Nasional Indonesia, p. 20, 2011.
Badan Standardisasi Nasional, “Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung. SNI 03-2847-2002,” Bandung: Badan Standardisasi Nasional, p. 251, 2002.
M. Jo, L. Soto, M. Arocho, J. St John, and S. Hwang, “Optimum mix design of fly ash geopolymer paste and its use in pervious concrete for removal of fecal coliforms and phosphorus in water,” Constr Build Mater, vol. 93, pp. 1097–1104, 2015, doi: 10.1016/j.conbuildmat.2015.05.034.
E. S. Sunarsih, S. As’ad, A. R. Mohd. Sam, and S. A. Kristiawan, “The effect of sodium hydroxide molarity on setting time, workability, and compressive strength of fly ash-slag-based geopolymer mortar,” J Phys Conf Ser, vol. 2556, no. 1, 2023, doi: 10.1088/1742-6596/2556/1/012019.
S. W. Wijaya, J. Satria, A. Sugiarto, and D. Hardjito, “The Use of Borax in Deterring Flash Setting of High Calcium Fly Ash Based Geopolymer,” vol. 857, pp. 416–420, 2016, doi: 10.4028/www.scientific.net/MSF.857.416.
SNI 03-0691, “Standar Nasional Indonesia Badan Standardisasi Nasional Bata beton (Paving block),” Sni 03-0691-1996, 1996.
M. Pengelolaan, P. K. Terluar, B. Pada, P. Sistem, S. Sosioekonomi, and D. A. N. Sistem, “Program pascasarjana,” 2014.
SNI-1969-2008 Metode Pengujian Berat Jenis dan Penyerapan Air Agregat Kasar.
I. D. A. Zulaekhah, “Beton Non Pasir Komposit Mortar,” Universitas Gadjah Mada, 2015.
DOI: https://doi.org/10.21831/inersia.v20i2.74239
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Angeline Yuhasnita, Suprapto Siswosukarto, Iman Satyarno
This work is licensed under a Creative Commons Attribution 4.0 International License.