Developing extreme-value instructional material based on model eliciting activities

Dinal Ulya Sukiman, Universitas Taman Siswa Palembang
Darmawijoyo Darmawijoyo Darmawijoyo, Fakultas Keguruan dan Ilmu Pendidikan Universitas Sriwijaya
Somakim Somad Somad, Fakultas Keguruan dan Ilmu Pendidikan Universitas Sriwijaya

Abstract


PENGEMBANGAN BAHAN AJAR NILAI EKSTRIM
BERBASIS MODEL ELICITING ACTIVITIES

Abstrak

Penelitian ini bertujuan untuk menghasilkan bahan ajar nilai ekstrim yang didesain dengan enam prinsip model eliciting activities (MEAs) yakni reality, model construction, self-assesment, model documentation, construct shareability, re-useability, dan effective prototype. Penelitian ini adalah penelitian design research tipe development study (development research) menggunakan model pengembangan analysis, design, develompment, implementation, dan evaluation (ADDIE) dan dievaluasi dengan tahapan formative evaluation (one to one, small group, dan field test). Subjek penelitian adalah siswa kelas XI IPA 1 SMA Negeri 2 Palembang yang berjumlah 40 orang. Hasil penelitian menunjukkan bahwa bahan ajar nilai ekstrim berbasis MEAs berupa Lembar Kerja Siswa (LKS) dan Petunjuk Guru (PG) yang valid, praktis, dan mudah digunakan. Perangkat pembelajaran ini membantu siswa memahami konsep turunan dan nilai ekstrim serta menerapkan konsep tersebut ke dalam permasalahan nyata (real life problem) dan menarik minat serta keseriusan siswa untuk belajar nilai ekstrim dan mengeksplorasi kemampuan matematis siswa tersebut

Abstract
This study was aimed at generating a set of extreme-value instructional materials using six principles of the model eliciting activities (MEAs) namely reality, model construction, self-assessment, model documentation, construct shareability and re-useability, and effective prototype. The study used the research development model using the analysis, design, development, implementation, and evaluation (ADDIE) model and was evaluated using formative evaluation phases (one to one, small group, and field test). The subjects were 40 students in grade XI of the Natural Science Department of the State Senior High School 2, Palembang. The result is a set of instructional design consisting of lesson plans, student worksheets, and teacher guides which are valid, practical, and easy-to-use. This instructional material is able to help students to understand the concept of derivatives and extreme values and apply the concepts to real-life problems. It also attracts the interest and the seriousness of the students to learn extreme values and explore their mathematical abilities.


Keywords


instructional material, extreme value, MEAs, mathematical ability

Full Text:

PDF

References


Aliprantis, C. D, & Carmona, G. (2003). Introduction to an economic problem: A models and modeling perspective. Dalam R. Lesh & H. Doerr (Eds.), Beyond constructivism: models and modeling perspectives on mathematics, problem solving, learning and teaching (pp.255-264). Mahwah, New Jersey: Lawrence Erlbaum Associates.
Asiala, M., Cottrill, J., Dubinsky, E., & Schwingendorf, K. (1997). The development of students’ graphical understanding of the derivative. Journal of Mathematical Behavior, 16(4), 399-431.
Bezuidenhout, J. (1998). First-year university students’ understanding of rate of change. International Journal of Mathematical Education in Science and Technology, 29, 389-399.
Branch, R. M. (2009). Instructional design: The ADDIE approach. New York, USA: Springer.
Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23(3), 247-285.
Burns, A. (2014). Calculus students’ understanding of the derivative in relation to the vertex of a quadratic function (Disertasi), Georgia State University.

Chamberlin, S. A., & Moon, S. M. (2005). Model-eliciting activities as a tool to develop and identify creatively gifted mathematicians. Journal of Secondary Gifted Education, 17(1), 37-47.
Frank, B., Kaupp, J., & Chen, A. (2013). Investigating the impact of model eliciting activities on development of critical thinking. Proceedings of the 2013 Canadian Enginering Education Association (CEEA13) Conference, Montreal, 2013.
Gilat, T., & Amit, M. (2013). Exploring young students creativity: The effect of model eliciting activities. PNA, 8(2), 51-59.
Hauger, G. S. (2000). Instantaneous rate of change: A numerical approach. International Journal of Mathematical Education of Science and Technology, 31(6), 891-897.
Lesh, R., & Doerr, H. M. (2003). Foundation of a Models and Modelling Perspective on Mathematics Teaching, Learning, and Problem Solving. Dalam R. Lesh & H. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics, problem solving, learning and teaching (pp. 3-33). Mahwah, New Jersey: Lawrence Erlbaum Associates.
Maharaj, A. (2013). An APOS analysis of natural science students’ understanding of derivatives. South African Journal of Education, 33(1).
Martadiputra, B. A. P. (2013). Modifikasi model-eliciting activities dengan menggunakan didactical design research untuk meningkatkan kemampuan berpikir statistis. Jurnal Kependidikan, 43(2), 105.
Moore, T., & Diefes-Dux, H. (2004, October). Developing model-eliciting activities for undergraduate students based on advanced engineering content. Dalam Frontiers in Education, 2004. FIE 2004. 34th Annual (pp. F1A-9). IEEE.
Nieveen, N. (2007). Formative evaluation in educational design research. Dalam T. Plomp & N. Nieveen (Eds.), An introduction to educational design research (pp. 89-102). Enschede: Netzodruk.
Oehrtman, M., Carlson, M., & Thompson, P. W. (2008). Foundational reasoning abilities that promote coherence in students’ understandings of function. Dalam M. P. Carlson & C. Rasmussen (Eds.), Making the connection: Research and practice in undergraduate mathematics (pp. 27-42). Washington, DC: Mathematical Association of America.
Orhun, N. (2012). Graphical understanding in mathematics education: Derivative functions and students’ difficulties. Procedia-Social and Behavioral Sciences, 55, 679-684.
Sahin, Z., Erbas, A. K., & Yenmez, A. A. (2015). Relational understanding of the derivative concept through mathematical modelling: A case study. Eurasia Journal of Mathematics, Science & Technology Education, 11(1), 177-188.
Tessmer, M. (1993). Planning and conducting formative evaluations: improving the quality of education and training. London: Kogan Page.
Wessels, H. (2014). Levels of mathematical creativity in model-eliciting activities. Journal of Mathematical Modelling and Application, 1(9), 22-40.
Yildirim, T. P., Shuman, L., & Basterfield-Sacre, M. (2010). Model-eliciting activities: assesing engineering student problem solving and skill integration processes. TEMPUS, 26(4), 831-845.
Yoon, C., Dreyfus, T., & Thomas, M. O. (2010). How high is the tramping track? Mathematising and applying in a calculus model-eliciting activity. Mathematics Education Research Journal, 22(2), 141-157.
Yu, S. Y., & Chang, C. K. (2011). What did Taiwan mathematics teachers think of model-eliciting activities and modelling teaching? Dalam Trends in teaching and learning of mathematical modelling (pp. 147-156). Dordrecht: Springer.
Zulkardi. (2006). Formative evaluation: what, why, when, and how. Diunduh dari http://www.oocities.org/zulkardi/books.html.




DOI: https://doi.org/10.21831/jk.v2i1.10133

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 JURNAL KEPENDIDIKAN

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

p-ISSN: 2580-5525 || e-ISSN: 2580-5533

Indexed by:

          


Flag Counter

View My StatsCreative Commons License

Jurnal Kependidikan by http://journal.uny.ac.id/index.php/jk is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View Journal Stats