Aljabar Semiprima Mendasar dan Aplikasinya pada Protokol Autentikasi
Muhammad Zaki Riyanto, Departemen Matematika, UIN Sunan Kalijaga Yogyakarta, Indonesia
Abstract
Library research dengan pendekatan deduksi-induksi ini bertujuan untuk mengkaji kesemiprimaan mendasar aljabar tak bebas yang dibangun secara hingga atas ring komutatif unital. Tujuan secara praktis penelitian ini adalah mengaplikasikan suatu contoh aljabar semiprima mendasar yang non-komutatif pada protokol autentikasi berdasarkan masalah dekomposisi. Di samping itu, aljabar semiprima mendasar lebih umum dari aljabar semiprima, hal ini ditunjukkan dengan suatu contoh penyangkal. Hasil utama dari penelitian ini adalah suatu aljabar yang dibangun secara hingga bersifat semiprima mendasar jika dan hanya jika ideal dasar nol merupakan irisan dari semua ideal dasar prima. Lebih lanjut ideal dasar nol merupakan satu-satunya ideal dasar nilpoten. Syarat perlu dan cukup ini serupa dengan sifat aljabar semiprima, dan pembuktian sifat-sifat ini pada keduanya memerlukan konsep annihilator.
The basically semiprime algebra and its application on authentication protocol
Abstract
This library research is conducted with a deductive-inductive approach. The aim of this study is to explore the basically semiprimeness of the finitely generated non-free algebra over a commutative unital ring. The basically semiprime algebra is more general than a semiprime algebra, which is proven by a counterexample. In theory, Theorem 12 is the main result of the study. The finitely generated algebra over a commutative unital ring is basically semiprime, if and only if, the zero basic ideal is the intersection of all prime basic ideals, if and only if, the zero basic ideal is the only nilpotent basic ideal. These necessary and sufficient conditions are analogous to the properties of a semiprime algebra, and proving these properties in both requires a concept of annihilator. The practical aim of this research is to apply an example of non-commutative basically semiprime algebra in an authentication protocol based on the decomposition problem.
Keywords
Full Text:
PDFReferences
Stinson, D. R. & Paterson, M. B. (2019). Cryptography Theory and Practice, (Ed.4) (pp. 1–13). CRC Press. https://www.routledge.com/Cryptography-Theory-and-Practice-Fourth-Edition/Stinson-Paterson/p/book/9781138197015
Klima, R., Klima, R. E., Sigmon, N., & Sigmon, N. P. (2018). Cryptology: Classical and Modern, (pp. 328) Chapman and Hall/CRC. https://doi.org/10.1201/9781315170664
Shor, P. W. (1997). Polynomial-time Algorithms for Prime Factorization and Discrete Logarithm on a Quantum Computer, SIAM Journal on Computing, 26(5), 1277–1283. https://doi.org/10.1137/ S0097539794319126
Knospe, H. (2019). A Course in Cryptography, American Mathematical Society, 40, 565–568. https://doi.org/10.1080/01611194.2020.1804483
Myasnikov, A., Shpilrain, V. & Ushakov, A. (2008). Group-based Cryptography, (pp. 37–45) Basel Switzerland: Birkhauser Verlag. https://link.springer.com/book/10.1007/978-3-7643-8827-0
Riyanto, M. Z. (2017). Protokol Otentikasi Berdasarkan Masalah Konjugasi Pada Grup Unit Atas Ring Endomorfisma END (Zp x Zp2). Jurnal Fourier, 6(1), 1–8. https://doi.org/10.14421/fourier. 2017.61.1-8
Stickel, E. (2005). A New Method for Exchanging Secret Keys. In Third International Conference on Information Technology and Applications (ICITA'05), IEEE, 2, 426–430. https://doi.org/10.1109/ ICITA.2005.33
Lal, S., & Chaturvedi, A. (2005). Authentication Schemes Using Braid Groups. arXiv preprint cs/0507066. https://doi.org/10.48550/arXiv.cs/0507066
Abrams, G., Ara, P., & Molina, M. S. (2017). Leavitt path algebras, a primer and handbook (pp. 37–54). Springer-Verlag, London Ltd. https://academics.uccs.edu/gabrams/documents/versionsentto Springer4April2017.pdf
Tomforde, M. (2011). Leavitt path algebras with coefficient in a commutative ring. J. Pure Appl. Algebra, 215(4), 471–484. https://doi.org/10.1016/j.jpaa.2010.04.031
Larki, H. (2015). Ideal structure of Leavitt path algebras with coefficients in a unital commutative ring. Communications in Algebra, 43(12), 5031–5058. https://doi.org/10.1080/ 00927872.2014.946133
Kanwar, P., Khatkar, M., & Sharma, R.K. (2019). On Leavitt path algebras over commutative rings, International Electronic Journal of Algebra, 26, 191–203. https://doi.org/10.24330/ieja.587053
Wardati, K., Wijayanti, I.E., & Wahyuni, S. (2014). On primeness of path algebras over a unital commutative ring, JP. Journal of Algebra, Number Theory and Applications, 34(2), 121–138. https://www.academia.edu/72926247
Wardati, K., Wijayanti, I.E., & Wahyuni, S. (2015). On free ideals in free algebras over a commutative ring, J. Indones, Math, Soc., 21(1), 59–69. https://doi.org/10.22342/jims.21.1.170.
Wardati, K. (2021). The application of semiprime basic ideal in authentication scheme, dipresentasikan pada The 2nd International Conference On Natural Sciences, Mathematics, Applications, Research, and Technology (ICON-SMART), 2021, https://aip.scitation.org/apc/info/forthcoming
Aranda Pino, G., Barquero, D. M., Gonzalev, C. M., & Molina, M. S., (2008). The socle of a Leavitt path algebra, Journal of Pure and Applied Algebra, 212(3), 500–509. https://doi.org/10.1016/ j.jpaa.2007.06.001
Wardati, K. (2018). Ideal Dasar Prima Dalam Aljabar Atas Suatu Ring Komutatif, Jurnal Fourier, 7(2), 79–86. https://doi.org/10.14421/fourier.2018.72.79-86
Wisbauer, R. (2017). Foundations of Module and Ring Theory, A handbook for Study and Research (pp. 9–24). (E-book) Routledge. https://doi.org/10.1201/9780203755532
Hazewinkel, M., & Gubareni, N. (2016). Algebras, Rings and Modules, Non-commutative Algebras and Rings, (pp. 9–35). Taylor & Francis Group, LLC CRC Press. https://www.routledge.com/Algebras-Rings-and-Modules-Non-commutative-Algebras-and-Rings/Hazewinkel-Gubareni/p/book/9780367783242
Birkenmeier, G. F. & Heider B. J. (2019). Annihilators and extensions of idempotent-generated ideals, Communications in Algebra, 47(3), 1348–1375. https://doi.org/10.1080/00927872.2018. 1506462
Zed, M. (2014). Metode Penelitian Kepustakaan, (Ed.3) (pp. 16–23). Yayasan Pustaka Obor Indonesia, https://books.google.co.id/books?hl=en&lr=&id=iIV8zwHnGo0C&oi=fnd&pg=PA1&dq=metode+penelitian+kepustakaan+mestika+zed+pdf&ots=nfhn6Q28Xr&sig=5ddag_DueryHc1jN-MEvTG1HcUM&redir_esc=y#v=onepage&q&f=false
Sari, D. P. (2016). Berpikir matematis dengan metode induktif, deduktif, analogi, integratif dan abstrak, Delta-Pi: Jurnal Matematika dan Pendidikan Matematika, 5(1), 79–89. http://ejournal.unkhair.ac.id/index.php/deltapi/article/view/235/187
Bland, P. E. (2011). Ring and Their Modules, (pp. 14–20). Walter de Gruyter GmbH & Co. KG, berlin New-York. https://vdocuments.net/reader/full/p-e-bland-rings-and-their-modules.
Vasco, M. I. G. & Steinwandt, R. (2015). Group Theoretic Cryptography, (pp. 31-32). CRC Press. https://doi.org/10.1201/b18272
Baumslag, G., Fine, B., Kreuzer, M., & Rosenbeger, G. (2015). A Course in Mathematical Cryptography, (pp. 128), De Gruyter. https://doi.org/10.1515/9783110372779
Horan, K., & Kahrobaei, D. (2018). The Hidden Subgroup Problem and Post-Quantum Group-Based Cryptography, In International Congress on Mathematical Software, Springer, Cham. 218–226. https://doi.org/10.1007/978-3-319-96418-8_26.
Gryak, J. & Kahrobaei, D. (2016). The Status of Polycyclic Group-Based Cryptography: A Survey and Open Problems. Groups Complexity Cryptology, 8(2), 171–186. https://doi.org/10.1515/gcc-2016-0013.
Roman’kov, V. (2017). Cryptanalysis of a Combinatorial Public Key Cryptosystem. Groups Complexity Cryptology, 9(2), 125–135. https://doi.org/10.1515/gcc-2017-0013
DOI: https://doi.org/10.21831/pythagoras.v17i1.48982
Refbacks
- There are currently no refbacks.
PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:
Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.
All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X