Model Klasik dan Model Fraksional untuk Dinamika Penyebaran Virus Covid-19 Berbasis Model Lotka-Volterra

Suparno Suparno, Alumni Departemen Matematika, Universitas Gadjah Mada, Indonesia, Indonesia
Sri Wahyuni Jamal, Fakultas Ekonomi Bisnis dan Politik, Universitas Muhammadiyah Kalimantan Timur, Indonesia, Indonesia
Riski Safitri, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta, Indonesia, Indonesia

Abstract


Covid-19 telah menjadi pandemi global sejak pertama kali muncul pada akhir tahun 2019. Pandemi ini ditandai dengan penyebarannya yang cepat dan gejalanya yang tidak muncul dengan cepat. Penelitian ini bertujuan untuk menganalisis dinamika penyebaran virus Covid-19 menggunakan pendekatan model Lotka-Volterra. Model yang diusulkan melibatkan model turunan klasik yang memuat  order bilangan bulat dan model turunan fraksional dengan order fraksional. Model matematika yang terbentuk memiliki dua titik ekuilibrium yang berbeda: titik ekuilibrium trivial dan titik ekuilibrium tak nol. Untuk model klasik, kestabilan titik ekuilibrium trivial adalah saddle, sedangkan titik ekuilibrium tak nol bersifat stabil asimptotik lokal. Selanjutnya, stabilitas lokal untuk model fraksional juga dibahas berdasarkan kondisi stabilitas Matignon. Karena melibatkan efek memori, model turunan fraksional memberikan gambaran yang lebih memadai dan realistis mengenai fenomena alam yang timbul dari model tersebut. Selain itu, hasil numerik menunjukkan bahwa parameter fraksional berpengaruh terhadap dinamika penyebaran Covid-19. Hasil ini mungkin dapat digunakan sebagai sebuah strategi bagi para pemangku jabatan dalam mengendalikan penyebaran pandemi.

Keywords


Covid-19; Lotka-Volterra; model turunan fraksional; model turunan klasik; stabilitas Matignon

Full Text:

PDF

References


Al-Khedhairi, A., Askar, S. S., Matouk, A. E., Elsadany, A., & Ghazel, M. (2018). Dynamics, chaos control, and synchronization in a fractional-order Samardzija-Greller population system with order lying in (0, 2). Complexity, 2018, 1–14. https://doi.org/10.1155/2018/6719341.

Carcione, J. M., Santos, J. E., Bagaini, C., & Ba, J. (2020). A Simulation of a COVID-19 Epidemic Based on a Deterministic SEIR Model. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00230.

Chen, T.-M., Rui, J., Wang, Q.-P., Zhao, Z.-Y., Cui, J.-A., & Yin, L. (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases of Poverty, 9(1), 24. https://doi.org/10.1186/s40249-020-00640-3.

Elsadany, A. A., & Matouk, A. E. (2015). Dynamical behaviors of fractional-order Lotka–Volterra predator–prey model and its discretization. Journal of Applied Mathematics and Computing, 49(1–2), 269–283. https://doi.org/10.1007/s12190-014-0838-6.

Fatmawati, Khan, M. A., Azizah, M., Windarto, & Ullah, S. (2019). A fractional model for the dynamics of competition between commercial and rural banks in Indonesia. Chaos, Solitons & Fractals, 122, 32–46. https://doi.org/10.1016/j.chaos.2019.02.009.

Fatmawati, Shaiful, E. M., & Utoyo, M. I. (2018). A Fractional-Order Model for HIV Dynamics in a Two-Sex Population. International Journal of Mathematics and Mathematical Sciences, 2018, 1–11. https://doi.org/10.1155/2018/6801475.

Goel, N. S., Maitra, S. C., & Montroll, E. W. (1971). On the volterra and other nonlinear models of interacting populations. Reviews of Modern Physics, 43(2), 231–276. https://doi.org/10.1103/RevModPhys.43.231.

Hernandez-Vargas, E. A., & Velasco-Hernandez, J. X. (2020). In-host mathematical modelling of Covid-19 in humans. Annual Reviews in Control, 50, 448–456. https://doi.org/10.1016/j.arcontrol.2020.09.006.

Jamal, S. W., Suparno, S., Fauziah, F., & Anindita, M. (2024). Analisis Tipe Kompetisi, Dinamika Kestabilan, dan Peramalan Perolehan Laba Bersih Lembaga Keuangan Bank. JAK (Jurnal Akuntansi) Kajian Ilmiah Akuntansi, 11(2), 316–330. https://doi.org/10.30656/jak.v11i2.7912.

Jamal, S. W., Suparno, S., Hadiyanti, S. U. E., Sadidah, D., & Dewi, M. (2024). The Bionomic Equilibrium Model for Balancing Forest Conservation and Economic Growth: Empirical Evidence from Indonesia. BHUMI: Jurnal Agraria Dan Pertanahan, 9(2), 126–140. https://doi.org/10.31292/bhumi.v9i2.679.

Jamal, S. W., Suparno, S., Rashid, U. K., & Fauziah, F. (2024). Competition Dynamics of Market Share for Assets in the Banking Industry Using the Lotka-Volterra Model Approach. ETIKONOMI, 23(2), 299–316. https://doi.org/10.15408/etk.v23i2.32226.

Jayatilaka, R., Patel, R., Brar, M., Tang, Y., Jisrawi, N. M., Chishtie, F., Drozd, J., & Valluri, S. R. (2022). A mathematical model of COVID-19 transmission. Materials Today: Proceedings, 54, 101–112. https://doi.org/10.1016/j.matpr.2021.11.480.

Khan, M. A., & Atangana, A. (2020). Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alexandria Engineering Journal, 59(4), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033.

Kuniya, T., & Nakata, Y. (2012). Permanence and extinction for a nonautonomous SEIRS epidemic model. Applied Mathematics and Computation, 218(18), 9321–9331. https://doi.org/10.1016/j.amc.2012.03.011.

Lin, Q., Zhao, S., Gao, D., Lou, Y., Yang, S., Musa, S. S., Wang, M. H., Cai, Y., Wang, W., Yang, L., & He, D. (2020). A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. International Journal of Infectious Diseases, 93, 211–216. https://doi.org/10.1016/j.ijid.2020.02.058.

Lotka, A. J. (1925). Elements of physical biology. Williams & Wilkins Company, Baltimore.

Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing. Computational Engineering in System Application, 2, 963.

Matouk, A. E. (2009). Chaos synchronization between two different fractional systems of Lorenz family. Mathematical Problems in Engineering, 2009(1). https://doi.org/10.1155/2009/572724.

Matouk, A. E., & Elsadany, A. A. (2016). Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model. Nonlinear Dynamics, 85(3), 1597–1612. https://doi.org/10.1007/s11071-016-2781-6.

Matouk, A. E., Elsadany, A. A., Ahmed, E., & Agiza, H. N. (2015). Dynamical behavior of fractional-order Hastings–Powell food chain model and its discretization. Communications in Nonlinear Science and Numerical Simulation, 27(1–3), 153–167. https://doi.org/10.1016/j.cnsns.2015.03.004.

Mohammed, W. W., Aly, E. S., Matouk, A. E., Albosaily, S., & Elabbasy, E. M. (2021). An analytical study of the dynamic behavior of Lotka-Volterra based models of COVID-19. Results in Physics, 26, 104432. https://doi.org/10.1016/j.rinp.2021.104432.

Podlubny, I. (1999). Fractional differential equations. San Diego: Academic Press.

Volterra, V. (1926). Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memoria Della Reale Accademia Nazionale Dei Lincei, 2, 31–113.

WHO. (2024). Coronavirus disease (Covid-19). World Health Organization.

Wu, Z., & McGoogan, J. M. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA, 323(13), 1239. https://doi.org/10.1001/jama.2020.2648.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017.




DOI: https://doi.org/10.21831/pythagoras.v19i2.76358

Refbacks

  • There are currently no refbacks.


PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:


Creative Commons License Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.

All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X

Visitor Number:

View Pythagoras Stats