Keefektifan Pembelajaran Menggunakan Pendekatan Problem Posing dan Pendekatan Open-Ended Ditinjau Dari HOTS

Dasih Lelani Nurina, , Indonesia
Heri Retnawati, Pendidikan Matematika, Universitas Negeri Yogyakarta, Indonesia

Abstract


Penelitian ini bertujuan untuk mendeskripsikan keefektifan pembelajaran trigonometri dengan menggunakan pendekatan problem posing dan pendekatan open-ended ditinjau dari HOTS siswa. Penelitian ini merupakan penelitian eksperimen semu. Penelitian ini menggunakan satu kelompok eksperimen dan satu kelompok kontrol. Populasi penelitian ini adalah seluruh siswa kelas X SMA Negeri 3 Bantul. Sampel penelitian sebanyak dua kelas yang dipilih secara acak. Instrumen penelitian yang digunakan adalah instrumen tes HOTS. Data dianalisis menggunakan uji one sample t-test dan two independent sample t-test. Hasil penelitian menunjukkan bahwa: pendekatan problem posing efektif ditinjau dari HOTS; pendekatan open-ended efektif ditinjau dari HOTS; Pendekatan open-ended tidak lebih efektif dibandingkan dengan pendekatan problem posing ditinjau dari HOTS.

Kata Kunciproblem posing, open-ended, higher order thinking skills (HOTS)

 

The Effectiveness Using Problem Posing Approach and Open-Ended Approach in Terms of the HOTS

 

Abstract

This study aims to describe the effectiveness of teaching Trigonometry using the Problem Posing Approach and Open-Ended Approach in terms of the HOTS of High School StudentsThis research was a quasi-experimentalThe research population comprised nine classes of Year X student of SMA Negeri 3 Bantul. The sample consisted of two classes that were randomly established. The instruments used in the research was HOTS test. The data analysis techniques consisted of the one sample t-test and two independent sample t-test. The results of the research show that:  the problem posing approach is effective in terms of HOTS;  the open-ended approach effective in terms of HOTS; and  there is no difference in effectiveness between the problem posing approach and open-ended approach in terms of HOTS.

Keywords: problem posing, open-ended, higher order thinking skills (HOTS)

Keywords


problem posing; open-ended; higher order thinking skills (HOTS)

Full Text:

PDF

References


Arikan, E. E. & Unal, H. (2015). An investigation of eighth grade students’ problem posing skills (Turkey sample). International Journal of Research in Education and Science (IJRES), 1(1), 23-30.

Bloom, B. S. ed. et al. (1956). Taxonomy of educational objectives: Handbook 1, Cognitive Domain. New York: David McKay.

Butkowski, J., et al. (1994). Improving student higher order thinking skills in mathematics. Theses, Mathematics Education Research. Saint Xavier University-IRI, Fied-Based Masters’s Program.

Conklin, W. (2012). Higher-order thinking skills to develop 21st century learners. Huntington Beach: Shell Educational Publishing, Inc.

Christou, C. (1999). An Empirical Taxonomy of Problem Posing Processes. Zentralblatt für Didaktik der Mathematik (ZDM) – The International Journal on Mathematics Education. Diambil tanggal 15 Januari 2007 dari http://subs.emis.de/journals/ZDM/zdm053a4.pdf.

Depdiknas. (2006). Peraturan Pemerintah Nomor 22 Tahun 2006, tentang Standar Isi.

Enan. (2014). Keefektifan pembelajaran matematika dengan pendekatan open ended dan problem posing ditinjau dari kemampuan berpikir kreatif dan kemampuan pemecahan masalah matematis siswa kelas x administrasi perkantoran smk muhammadiyah bobotsari Tahun 2012/2013. Tesis magister tidak diterbitkan, Universitas Negeri Yogyakarta, Yogyakarta.

Hashimoto. (1997). The methods of fostering creativity through mathematical problem solving. Yokohama National University. 86-87.

Inprasitha, M. (2006). Open-ended approach and teacher education. Tsukuba Journal of Education Study in Mathematics, Vol. 25, 169-258.

Krathwohl, D. R. 2002. A Revision of Bloom’s Taxonomy: An Review. Theory Into Practice. Volume 41, Number 4. College Education. The Ohio State University.

Lavy, I. & Shriki, A. (2007). Problem posing as a means for developing mathematical knowledge of prospective teachers. Makalah disajikan pada Proceedings of the 31th Conference of The International Group for the Psychology of Mathematics Education, di Oranim Academic College of Education

NCTM. (2000). Principles and standars for school mathematics. Reston, VA: NCTM

Shimada, S. (1997). The Significance of an Open-Ended Approach. The Open-Ended Approach: A New Proposal for Teaching Mathematics (pp. 1 - 9). Reston, VA: NCTM.

Silver, E.A. (1997). Fostering creativity through instruction rich in mathematical problem posingand problem posing. Diambil pada tanggal 20 Oktober 2012 dari http://www.fizkarlsruhe.de/fiz/publication/zdm/2dm97343.pdf

Steven, J. (2002). Applied multivariate statistic for the social science. Mahwah, NJ: Lawrence Erlbaum Associate.

Takahashi, Akihiko. (2008). Communication as a process for students to learn mathematical. DePaul University. Diambil pada tanggal 17 Februari 2015, dari http://www.criced.tsukuba.ac.jp/math/apec/apec2008/.

Xia, X., Lu, C., & Wang, B. (2008). Research on mathematics instruction experiment based problem posing. Diambil tanggal 02 Agustus 2014, dari http://www.educationinforatoz.org.




DOI: https://doi.org/10.21831/pg.v10i2.9128

Refbacks

  • There are currently no refbacks.


PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:


Creative Commons License Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.

All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X

Visitor Number:

View Pythagoras Stats