Cluster analysis of the national examination: School grouping to maintain the sustainability of high school quality
Heri Retnawati, Universitas Negeri Yogyakarta, Indonesia
Okky Riswandha Imawan, Universitas Cenderawasih, Indonesia
Abstract
Keywords
Full Text:
PDFReferences
Aditya, A., Jovian, I., & Sari, B. N. (2020). Implementasi K-means clustering Ujian Nasional sekolah menengah pertama di Indonesia tahun 2018/2019. Jurnal Media Informatika Budidarma, 4(1), 51–58. https://doi.org/10.30865/mib.v4i1.1784.
Berry, N. S., & Maitra, R. (2019). TiK-means: Transformation-infused K-means clustering for skewed groups. Statistical Analysis and Data Mining: The ASA Data Science Journal, 12(3), 223–233. https://doi.org/10.1002/SAM.11416.
Bilodeau, M., & Brenner, D. (2000). Theory of multivariate statistics. Springer. https://doi.org/10.5860/choice.37-3391.
Cai, Y., & Tang, C. (2021). Privacy of outsourced two-party K-means clustering. Concurrency and Computation: Practice and Experience, 33(8), e5473. https://doi.org/10.1002/CPE.5473.
Capó, M., Pérez, A., & Lozano, J. A. (2020). An efficient K-means clustering algorithm for tall data. Data Mining and Knowledge Discovery, 34(3), 776–811. https://doi.org/10.1007/S10618-020-00678-9.
Chikoko, V. (2007). The school cluster system as an innovation: Perceptions of Zimbabwean teachers and school heads. Africa Education Review, 4(1), 42–57. https://doi.org/10.1080/18146620701412142.
Crawford, A. M., Berry, N. S., & Carriquiry, A. L. (2021). A clustering method for graphical handwriting components and statistical writership analysis. Statistical Analysis and Data Mining: The ASA Data Science Journal, 14(1), 41–60. https://doi.org/10.1002/SAM.11488.
Demidenko, E. (2018). The next-generation K-means algorithm. Statistical Analysis and Data Mining: The ASA Data Science Journal, 11(4), 153–166. https://doi.org/10.1002/SAM.11379.
Denis, D. J. (2020). Univariate, bivariate, and multivariate statistics using R: Quantitative Tools for data analysis and data science. John Wiley & Sons. https://doi.org/10.1002/9781119549963.
Dorman, K. S., & Maitra, R. (2021). An efficient k-modes algorithm for clustering categorical datasets. Statistical Analysis and Data Mining: The ASA Data Science Journal. https://doi.org/10.1002/SAM.11546.
Ediyanto, E., Mara, M. N., & Satyahadewi, N. (2013). Pengklasifikasian karakteristik dengan metode K-Means cluster analysis. Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster), 02(2), 133–136. https://jurnal.untan.ac.id/index.php/jbmstr/article/view/3033.
Estivill-Castro, V., & Yang, J. (2004). Fast and robust general purpose clustering algorithms. Data Mining and Knowledge Discovery, 8(2), 127–150. https://doi.org/10.1023/B:DAMI.0000015869.08323.B3.
Faisal, M., Zamzami, E. M., & Sutarman, S. (2020). Comparative analysis of inter-centroid K-means performance using Euclidean distance, Canberra distance and Manhattan distance. Journal of Physics: Conference Series, 1566. https://doi.org/10.1088/1742-6596/1566/1/012112.
Han, J., & Kamber, M. (2011). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann.
Hossain, M. S., Ramakrishnan, N., Davidson, I., & Watson, L. T. (2012). How to “alternatize” a clustering algorithm. Data Mining and Knowledge Discovery, 27(2), 193–224. https://doi.org/10.1007/S10618-012-0288-4.
Huang, Z. (1998). Extensions to the K-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2(3), 283–304. https://doi.org/10.1023/A:1009769707641.
Huberty, C., & Elejnik, S. (2007). Applied MANOVA and discriminant analysis. Journal of the American Statistical Association, 102(479), 1075-1076. https://doi.org/10.1198/jasa.2007.s203.
Imawan, O. R., & Ismail, R. (2020). Meningkatkan kompetensi guru Matematika dalam mengembangkan media pembelajaran 4.0 melalui pelatihan aplikasi Geogebra. Jurnal Masyarakat Mandiri (JMM), 4(6), 1231–1239. https://journal.ummat.ac.id/index.php/jmm/article/view/3102.
Ismail, R., & Imawan, O. R. (2021a). Meningkatkan penguasaan TPACK guru di Papua melalui pelatihan pembuatan video pembelajaran pada masa pandemi Covid-19. Jurnal Masyarakat Mandiri (JMM), 5(1), 277-288. https://journal.ummat.ac.id/index.php/jmm/article/view/3862.
Ismail, R., & Imawan, O. R. (2021b). Optimalisasi kompetensi calon guru Matematika di Papua melalui pembuatan video pembelajaran di masa pandemi Covid-19. Jurnal Masyarakat Mandiri (JMM), 5(2), 734–745. http://journal.ummat.ac.id/index.php/jmm/article/view/4158.
Kapil, S., Chawla, M., & Ansari, M. D. (2016). On K-means data clustering algorithm with genetic algorithm. In the 4th International Conference on Parallel, Distributed and Grid Computing, 202–206. https://doi.org/10.1109/PDGC.2016.7913145.
Khairati, A. F., Adlina, A. A., Hertono, G. F., & Handari, B. D. (2019). Kajian indeks validitas pada algoritma K-means enhanced dan K-means MMCA. In Prosiding Seminar Nasional Matematika, 2, 161–170. https://journal.unnes.ac.id/sju/index.php/prisma/article/view/28906.
Kurniadi, D., & Sugiyono, A. (2020). Pengelompokkan data akademik menggunakan algoritma K-means pada data akademik Unissula. Jurnal Transformatika, 18(1), 93–101. https://doi.org/10.26623/transformatika.v18i1.2277.
Lithio, A., & Maitra, R. (2018). An efficient k-means-type algorithm for clustering datasets with incomplete records. Statistical Analysis and Data Mining: The ASA Data Science Journal, 11(6), 296–311. https://doi.org/10.1002/SAM.11392.
Lock, A. (2011). Clustering together to advance school improvement: Working together in peer support with an external colleague. National College for Leadership of Schools and Children's Services.
Mahdavi, M., & Abolhassani, H. (2008). Harmony K-means algorithm for document clustering. Data Mining and Knowledge Discovery, 18(3), 370–391. https://doi.org/10.1007/S10618-008-0123-0.
Mavroeidis, D., & Marchiori, E. (2013). Feature selection for k-means clustering stability: Theoretical analysis and an algorithm. Data Mining and Knowledge Discovery, 28(4), 918–960. https://doi.org/10.1007/S10618-013-0320-3.
Nariya, M., Kim, J. H., Xiong, J., Kleindl, P. A., Hewarathna, A., Fisher, A. C., Joshi, S. B., Schöneich, C., Forrest, M. L., Middaugh, C. R., Volkin, D. B., & Deeds, E. J. (2017). Comparative characterization of crofelemer samples using data mining and machine learning approaches with analytical stability data set. Journal of Pharmaceutical Sciences, 106(11), 3270–3279. https://doi.org/10.1016/j.xphs.2017.07.013.
Primartha, R. (2018). Buku belajar maschine learning: Teori dan praktek. Informatika.
Rajabi, A., Eskandari, M., Ghadi, M. J., Li, L., Zhang, J., & Siano, P. (2020). A comparative study of clustering techniques for electrical load pattern segmentation. Renewable and Sustainable Energy Reviews, 120. 109628. https://doi.org/10.1016/J.RSER.2019.109628.
Rencher, A. (2001). Methods of multivariate analysis (2nd ed.). John Wiley & Sons.
Singh, A., Yadav, A., & Rana, A. (2013). K-means with three different distance metrics. International Journal of Computer Applications, 67(10), 13–17. https://doi.org/10.5120/11430-6785.
Sutriyani, T. P., Siregar, A. M., & Kusumaningrum, D. S. (2018). Implementasi algoritma K-means terhadap Pengelompokan nilai ujian nasional tingkat SMP di Provinsi Jawa Barat. Techno Xplore : Jurnal Ilmu Komputer Dan Teknologi Informasi, 3(1), 30–36. https://doi.org/10.36805/technoxplore.v3i1.797.
Tabachnik, B., & Fidel, L. (2014). Using multivariate statistics (6th ed.). Pearson Education.
Tan, P.-N., Steinbach, M., Karpatne, A., & Kumar, V. (2019). Introduction to data mining (2nd ed.). Pearson. https://www.pearson.com/us/higher-education/program/Tan-Introduction-to-Data-Mining-2nd-Edition/PGM214749.html.
Tinsley, H. E., & Brown, S. (2000). Handbook of applied multivariate statistics and mathematical modeling. In Handbook of applied multivariate statistics and mathematical modeling. Elsevier Science & Technology Books. https://doi.org/10.1016/b978-0-12-691360-6.x5000-9.
Toledo, M. D. G. (2005). A comparison in cluster validation techniques. University of Puerto Rico.
van der Maaten, L., & Hinton, G. (2008). Visualizing Data Using t-SNE. Journal of Machine Learning Research, 9(1), 2579–2605. https://www.jmlr.org/papers/v9/vandermaaten08a.html.
Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. J., & Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14, 1–37. https://doi.org/10.1007/s10115-007-0114-2.
DOI: https://doi.org/10.21831/reid.v8i1.45872
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.