Batik Jlamprang with Koch snowflake and Koch anti-snowflake fractal geometry using Desmos

Tri Sedya Febrianti, Universitas Sebelas Maret, Indonesia
Fakhrunnisa Cahya Afifi, Universitas Sebelas Maret, Indonesia

Abstract


Batik Jlamprang is a cultural heritage from Pekalongan. This batik motif has a round shape and floral ornaments. The motif of batik Jlamprang is similar to the Koch snowflake. Mathematically, batik Jlamprang can be categorized as one of the shapes of fractal geometry. There are many known shapes of fractals, some of which are Koch snowflake and Koch anti-snowflake. The difference between Koch snowflake and Koch anti-snowflake lies in the fractal generation process. Koch anti-snowflake is the opponent of Koch snowflake. The main step of the generation process is done to develop the Koch snowflake and Koch anti-snowflake function formulas, followed by iterations. The making of the batik motif is originally carried out traditionally, which has disadvantages in terms of time and cost. However, this study proposes that the motif of batik Jlamprang can be designed mathematically with the help of Desmos software. This will definitely shorten the production time and reduce production costs. The Desmos software was chosen because it has several advantages, including easy to operate via a mobile phone or a computer. This paper examines the function formulas, iterations, and application of Koch snowflake and Koch anti-snowflake fractal geometry in designing batik Jlamprang assisted by Desmos. The method used was literature review by collecting several relevant sources. The fractal generation process produced the function formulas of Pn (perimeter) and An or Sn (area) which are necessary for designing the batik Jlamprang motif. The visualization process was carried out on Desmos, followed by geometric transformation and cloning to produce the batik Jlamprang motif as desired.


Keywords


Desmos; fractal; Jlamprang; Koch snowflake

Full Text:

PDF

References


Alkhori, E. A., Purnomo, K. D., & Juliyanto, B. (2019). Pembangkitan fraktal Koch anti-snowflake (m,n,c) menggunakan metode transformasi Affine. Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika Dan Nilai Islami), 3(1), 11–16. http://conferences.uin-malang.ac.id/index.php/SIMANIS/article/view/901

Anggraini, L. D. F. (2019). Geometri fraktal dan transformasi geometri sebagai dasar pengembangan motif batik Sekar Jagad. Transformasi : Jurnal Pendidikan Matematika Dan Matematika, 3(1), 1–14. https://doi.org/10.36526/tr.v3i1.384

Cahyo, A. N. (2018). Pengaruh batik fraktal dalam perkembangan batik Nusantara dan industri kreatif. Universitas Sebelas Maret.

D’Ambrosio, U., & Rosa, M. (2017). Ethnomathematics and its pedagogical action in mathematics education. In M. Rosa, L. Shirley, M. E. Gavarrete, & W. V. Alangui (Eds.), Ethnomathematics and its diverse approaches for mathematics education (pp. 285–305). Springer Cham. https://doi.org/10.1007/978-3-319-59220-6_12

Femmy, F. (2020). Pengembangan prototype batik Lampung motif fraktal dengan aplikasi Geogebra [UIN Raden Intan Lampung]. http://repository.radenintan.ac.id/10096/

Hasang, S., & Supardjo, S. (2012). Geometri fraktal dalam rancangan arsitektur. Media Matrasain, 9(2), 111–124. https://doi.org/10.35792/matrasain.v9i2.665

Kamil, A., Hidayat, R., & Purnomo, K. D. (2017). Determination of fractal area of the Koch Snowflake. Majalah Ilmiah Matematika Dan Statistika (MIMS), 17(1), 23–30. https://doi.org/10.19184/mims.v17i1.23750

Pratiwi, A., Setyawan, S., & Affanti, T. B. (2016). Batik fraktal kemajuan teknologi oleh visual digital. TEXFILE Journal of Textile, 3(1), 39–54. https://jurnal.uns.ac.id/texfile/article/view/33302

Purnomo, K. D., Putri, D. H. P., & Kamsyakawuni, A. (2020). Inovasi desain batik fraktal menggunakan geometri fraktal koch snowflake (m,n,c). Prisma : Prosiding Seminar Nasional Matematika, 3, 131–140. https://journal.unnes.ac.id/sju/index.php/prisma/article/view/37564

Riwansia, R. R. (2016). Pengembangan desain batik melalui penggunaan geometri fraktal Koch Snowflake. Universitas Jember.

Romadiastri, Y. (2013). Batik fraktal: Perkembangan aplikasi Geometri fraktal. Delta : Jurnal Ilmiah Pendidikan Matematika, 1(2), 158–164. https://doi.org/10.31941/delta.v1i2.484

Saefurrohman, S., & Ningsih, D. H. U. (2016). Desain motif batik dengan metode fraktal dan algoritma L-System untuk membangun pustaka Batik Wali. Dinamik, 21(1), 42–51. https://doi.org/10.35315/dinamik.v21i1.6080

Sholeha, R., Purnomo, K. D., & Riski, A. (2020). Pengembangan batik fraktal berbasis Koch Snowflake (m, n, c) dan Koch Anti-Snowflake (m, n, c) menggunakan L-System. PRISMA, Prosiding Seminar Nasional Matematika, 3, 147–155. https://journal.unnes.ac.id/sju/index.php/prisma/article/view/37834




DOI: https://doi.org/10.21831/ej.v3i1.48775

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ethnomathematics Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Printed ISSN (p-ISSN): 2798-9755 | Online ISSN (e-ISSN): 2776-3676

Creative Commons LicenseEthnomathematics Journal by https://journal.uny.ac.id/index.php/ethnomath/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 

Visitor Statistics

akun togel