The Complexity of Pencil Graph and Line Pencil Graph
Fransiskus Fran, Department of Mathematics, Universitas Tanjungpura
Yundari Yundari, Department of Mathematics, Universitas Tanjungpura, Indonesia
Abstract
Keywords
Full Text:
PDFReferences
Afzal, H. U., Javaid, M., Ovais, A., & Nur Alam, M. (2022). Computation of the complexity of networks under generalized operations. Complexity, 2022(1), 6288054.
Ali, A., Furtula, B., Redžepović, I., & Gutman, I. (2022). Atom-bond sum-connectivity index. Journal of Mathematical Chemistry, 60(10), 2081-2093.
Chartrand, G., Lesniak, L, & Zhang, P. (2016). Graphs & Digraphs, 6th ed. Boca Raton London New York: CRC Press Taylor & Francis Group.
Daoud, S. N. (2019). Number of Spanning trees of cartesian and composition products of graphs and Chebyshev polynomials. IEEE Access, 7, 71142-71157.
Daoud, S. N. (2017). Complexity of graphs generated by wheel graph and their asymptotic limits. Journal of the Egyptian Mathematical Society, 25(4), 424-433.
Daoud, S. N., & Mohamed, K. (2017). The complexity of some families of cycle-related graphs. Journal of Taibah University for science, 11(2), 205-228.
Daoud, S. N. (2019). Number of spanning trees of some families of graphs generated by a triangle. Journal of Taibah University for Science, 13(1), 731-739.
Daoud, S. N. (2014). Number of spanning trees of different products of complete and complete bipartite graphs. Mathematical Problems in Engineering, 2014(1), 965105.
Daoud, S. N., & Mohamed, K. A. (2014). Complexity of some special named graphs with double edges. Journal of Taibah University for Science, 8(2), 162-174.
Daoud, S. N., & Saleh, W. (2020). Number of Spanning Trees of Some of the Families of Sequence Graphs Generated by Triangle Graph. International Journal of Mathematical Combinatorics, 3, 26-55.
Daoud, S. N., & Aljohani, M. (2023). Number of Spanning Trees of Sequence of Some Families of Graphs That Have the Same Average Degree and Their Entropies. International J. Math. Combin. Vol, 4, 14-32.
Daoud, S. N., & Saleh, W. (2020). Number of Spanning Trees of Some of Pyramid Graphs Generated by a Wheel Graph. Mathematical Combinatorics, 43.
Daoud, S. N., & Siddiqui, M. K. (2019). On the Complexity of Some Classes of Circulant Graphs and Chebyshev Polynomials. International J. Math. Combin. Vol, 4, 29-47.
Deen, M. R. (2023). Enumeration of spanning trees in prisms of some graphs. Proyecciones (Antofagasta), 42(2), 339-391.
El Deen, M. R. Z., & Aboamer, W. A. (2021). Complexity of some duplicating networks. IEEE Access, 9, 56736-56756.
Fran, F., Alexander, Yundari, Romanda, P., & Febyolga, E. (2024). The Complexity of Octopus Graph, Friendship Graph, and Snail Graph. EduMatSains : Jurnal Pendidikan, Matematika Dan Sains, 9(1), 84-101.
Harris, J. M. (2008). Combinatorics and graph theory.
Javaid, M., Afzal, H. U., & Wang, S. (2021). Complexity of Some Generalized Operations on Networks. Complexity, 2021(1), 9999157.
Jia-Bao, L., & Daoud, S. N. (2019). Number of Spanning Trees in the Sequence of Some Graphs. Complexity, 2019.
Joedo, J. C., Kristiana, A. I., Agustin, I. H., & Nisviasari, R. (2022). On the rainbow antimagic coloring of vertex amalgamation of graphs. In Journal of Physics: Conference Series (Vol. 2157, No. 1, p. 012014). IOP Publishing.
Lipschutz, S., dan Lipson,M. L. (2017) Discrete Mathematics (Schaum’s Outlines), 3rd ed. McGraw Hill Education.
Liu, J. B., & Daoud, S. N. (2018). The complexity of some classes of pyramid graphs created from a gear graph. Symmetry, 10(12), 689.
Roza, I. (2016). Graf garis (line graph) dari graf siklus, graf lengkap dan graf bintang. Jurnal Matematika UNAND, 3(2), 1-4.
Simamora, D. N., & Salman, A. N. M. (2015). The rainbow (vertex) connection number of pencil graphs. Procedia Computer Science, 74, 138-142.
Verma, P., Nagarajan, S., & Raj, A. (2022). Teori grafik spektral osilasi otak—ditinjau kembali dan disempurnakan. NeuroImage , 249 , 118919.
Zhang, J., & Yan, W. (2020). Counting spanning trees of a type of generalized Farey graphs. Physica A: Statistical Mechanics and its Applications, 555, 124749.
Zeen El Deen, M. R., & El-Sherbiny, H. (2022). Enumerating Spanning Trees of Some Advanced Families of Graphs. Frontiers in Scientific Research and Technology, 3(1), 20-35.
Zeen El Deen, M. R., Aboamer, W. A., & El-Sherbiny, H. M. (2023). The Complexity of the Super Subdivision of Cycle-Related Graphs Using Block Matrices. Computation, 11(8), 162.
Zeen El Deen, M. R., & Aboamer, W. A. (2021). Complexity of some graphs generated by square. J. Math. Comput. Sci., 11(4), 4248-4283.
Zeen El Deen, M. R., Aboamer, W. A., & El-Sherbiny, H. M. (2024). Explicit Formulas for the Complexity of Networks Produced by New Duplicating Corona and Cartesian Product. Journal of Mathematics, 2024(1), 9131329.
DOI: https://doi.org/10.21831/pythagoras.v19i2.77747
Refbacks
- There are currently no refbacks.
PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:
Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.
All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X